

Longitudinal Beam Physics on UMER

Patrick O'Shea and the UMER Team June 23, 2008

Outline

- Importance of longitudinal structure
- Some gun physics
- Launching waves
- Speed of sound
- Beam transport

Real electron beam distributions are not named after famous people!

Real beam = Asymmetric Bactrian Camel with Attendant Obelisk Distribution

Problem Statement

Problem:

Real beams have unwanted velocity (energy) or density modulations

Reasons:

- Drive laser fluctuations in photoinjectors
- Over-focusing or under-focusing in longitudinal focusing systems

Technique:

- Introduce perturbation "deliberately" in an intense beam and study its evolution.
- •UMER provides the platform for such experiments

Sources of problems

	What	Where	How
Causal connection			
	Space charge (self) fields	electron source, low energy injector/linac,	Space charge converts density modulation to energy modulations, and causes time dependant defocusing
	Wakefields/Higher OM	Cavities and structures	Bunch structure can excite high frequency modes
	Coherent Synchrotron Radiation (CSR)	bends	Bunch structure can excite coherent synchrotron radiation

Two Types of Longitudinal Problems on UMER

- Longitudinal effects in the gun and space charge driven instabilities
- Longitudinal effects in in multi-turn transport: evolution of perturbations

These are relevant to other accelerators

1. Longitudinal structure and space charge instabilities in the gun

Space-charge driven longitudinal beam breakup

D.H Dowell et al. Phys Plasmas, 4, 3369 (1997)

Pulse shapes at 17.5 MeV

Child-Langmuir Limit Revisited

Conventional Child-Langmuir Analysis:

Uniform 1-D current distribution Steady state Pulse length $\tau_p >>$ Electron transit time T Real Photoinjector Analysis: non-uniform 3-D time-dependant current distribution transient state Pulse length τ_p < Electron transit time T

Cathode – Anode Transit Time (T) in guns

Non-relativistic

$$T = \sqrt{\frac{2D^2m}{eV_0}}$$

D = A/C gap = 2.5 cm in UMER $V_0 = Gun voltage = 10 kV$

For UMER gun $T \approx 1$ ns

Relativistic

$$T = \frac{mc\gamma_{f}\sqrt{1 - \frac{1}{\gamma_{f}^{2}}}}{eE_{A}}$$

 $\gamma_{\rm f}$ = relativistic factor at gun exit ≈ 3 for 1 MeV E_A = average applied electric field ≈ 30 MV

For Relativistic gun $T \approx .15 \text{ ns}$

For a typical RF photoinjector $\tau_p \approx 0.01$ ns

Charge per Pulse vs Drive Laser Intensity Experimental data

Ágúst Valfells, D. W. Feldman, M. Virgo, P. G. O'Shea, and Y. Y. Lau, "Effects of pulse-length and emitter area on virtual cathode formation in electron guns", *Phys. Plasmas* **9**, 2377 (2002)

Critical Current (J_{crit}) in short pulse mode for onset of space charge instabilities

Critical current density:

$$J_{CRIT} = 2 \frac{1 - \sqrt{1 - \frac{3}{4}X_t^2}}{X_t^3} J_{CR}$$

$$X_t = \tau_p \, / \, \mathrm{T}$$

Critical charge density:

$$Q_{CRIT} = 2 \frac{1 - \sqrt{1 - \frac{3}{4}X_t^2}}{X_t^2} Q_{CL}$$

Short pulse mode $X_t \ll 1$

$$J_{CRIT} \approx \frac{3}{4X_t} J_{CL}$$
$$Q_{CRIT} \approx \frac{3}{4} Q_{CL}$$

REAP

Agúst Valfells, D. W. Feldman, M. Virgo, P. G. O'Shea, and Y. Y. Lau, "Effects of pulse-length 12 and emitter area on virtual cathode formation in electron guns", Phys. Plasmas 9, 2377 (2002)

UMER is a unique test bed for studying the evolution of current perturbations

3:38 AM

UMER Drive Laser Setup

Space Charge Instabilities in the UMER Gun

Charge per pulse vs laser intensity Onset of longitudinal instability Experimental data

Relative Laser Intensity

Ágúst Valfells, D. W. Feldman, M. Virgo, P. G. O'Shea, and Y. Y. Lau, "Effects of pulse-length and emitter area on virtual cathode formation in electron guns", Phys. Plasmas 9, 2377 (2002)

16

Normalized Pulse Length $[\tau_p/T_{transit}]$

Ágúst Valfells, D. W. Feldman, M. Virgo, P. G. O'Shea, and Y. Y. Lau, "Effects of pulse-length and emitter area on virtual cathode formation in electron guns", *Phys. Plasmas* **9**, 2377 (2002)

17

2. Evolution of longitudinal structure in beam transport

Experimental Results of Laser-induced Space Charge waves

Evolution of Multiple Pulses

Derivation of Sound Speed

(one-dimension cold-fluid model)

Definition of perturbation

$$\begin{cases} \Lambda(z,t) = \Lambda_0 + \Lambda_1 e^{i(\omega t - kz)} \\ v(z,t) = v_0 + v_1 e^{i(\omega t - kz)} \\ I(z,t) = I_0 + I_1 e^{i(\omega t - kz)} \end{cases}$$

Continuity equation Momentum equation

$$\begin{cases} \frac{\partial (\Lambda \mathbf{v})}{\partial z} + \frac{\partial \Lambda}{\partial t} = 0\\ \frac{\partial \mathbf{v}}{\partial z} \mathbf{v}_0 + \frac{\partial \mathbf{v}}{\partial t} = \frac{q}{\gamma_0^3 m} E_s \end{cases}$$

Maxwell's equation and boundary conditions

$$E_{s} = -\frac{g}{4\pi\varepsilon_{0}} \left(\frac{\partial \Lambda}{\partial z} + \frac{1}{c^{2}} \frac{\partial I}{\partial t} \right) \qquad g = 2\ln\frac{b}{\overline{a}}$$

Dispersion equation

$$\left(\omega - kv_0\right)^2 - C_s^2 k^2 = 0 \qquad \mathbf{C_s} = \mathbf{Sound speed}$$

Phase velocity of fast/slow waves

IREAP

$$\mathbf{v}_{f} = \frac{\omega}{k_{+}} = \mathbf{v}_{0} + \mathbf{C}_{s}$$

$$\mathbf{v}_{s} = \frac{\omega}{k_{+}} = \mathbf{v}_{0} - \mathbf{C}_{s}$$

$$C_{s} = \sqrt{\frac{qg\Lambda_{0}}{4\pi\varepsilon_{0}\gamma_{0}^{5}m}} \quad or \ C_{s} = \sqrt{\frac{egI}{4\pi\varepsilon_{o}mv_{o}\gamma^{5}}}$$
For UMER $\mathbf{C}_{s} \approx 10^{6} \text{ m/s}$,

M. Reiser, Theory and Design of Charged Particle Beams, Chapter 6, (2008)

Evolution of Space-Charge Waves Fast (Forward) and Slow (Backward) Waves

Definition of perturbation

$$\begin{cases} \mathbf{v}_{1}(0,t) = \delta \mathbf{v}_{0} p(t) \\ I_{1}(0,t) = \eta I_{0} p(t) \\ \Lambda_{1}(0,t) = (\eta - \delta) \Lambda_{0} p(t) \end{cases}$$

Algebraic equations of

Assume pure density perturbation $\delta = 0$

$$\Lambda_{1}(z,t) = \frac{\Lambda_{0}}{2} \eta \left[h \left(t - \frac{z}{v_{0} - C_{s}} \right) + h \left(t - \frac{z}{v_{0} + C_{s}} \right) \right]$$

$$v_{1}(z,t) = \frac{C_{s}}{2} \eta \left[-h \left(t - \frac{z}{v_{0} - C_{s}} \right) + h \left(t - \frac{z}{v_{0} + C_{s}} \right) \right]$$

Red = slow (backward) wave
Blue = fast (forward) wave)

h function is a wave that depends of the initial conditions etc.

Evolution of Space-Charge Waves

$$\Lambda_{1}(z,t) = \frac{\Lambda_{0}}{2} \eta \left[h \left(t - \frac{z}{v_{0} - C_{s}} \right) + h \left(t - \frac{z}{v_{0} + C_{s}} \right) \right]$$
$$v_{1}(z,t) = \frac{C_{s}}{2} \eta \left[-h \left(t - \frac{z}{v_{0} - C_{s}} \right) + h \left(t - \frac{z}{v_{0} + C_{s}} \right) \right]$$

Space Charge Wave Transport Experimental Results from UMER

Experimental Results of Laser-induced Space Charge waves

Multiturn observation of waves in UMER

Multiturn observation of waves in UMER

Space charge wave propagation

Space Charge Converts Density Modulation into Energy Modulations

Experiment at Brookhaven DUV FEL after perturbed beam is accelerated to 75 MeV

Jonathan Neumann, Dissertation 2005Q = 0.16 nCIREAPhttps://drum.umd.edu/dspace/handle/1903/2437

Is the inverse Humpty-Dumpty Effect possible ?

Illustration by John Tenniel From *Through the Looking-Glass*.